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Results are presented of a preliminary numerical investigation into a three- 
dimensional laminar boundary layer. It is assumed that the flow is over a develop- 
able surface and the boundary conditions at the outer edge of the layer are chosen 
to be u = Uo+xU,, v = yV,. This choice enables the governing equations to be 
written in terms of two, and not three, independent variables, viz. x and z. 
However, the three-dimensionality of the problem gives rise to a coupling of the 
equations which, not unnaturally, is still present after the elimination of y. 

For appropriate values of U, and V, it is found possible to integrate the equa- 
tions approximately from the ‘birth’ of the boundary layer (x = 0) right up to a 
saddle point of attachment. Calculations have already been made for flow at such 
attachment points and the comparison of the present results with them is 
extremely good. 

1. Introduction 
When a fluid flows past a finite body there are points or lines at  which the fluid 

(i) attaches itself to the body, and (ii) separates from the body. For example, in 
the two-dimensional flow past a circular cylinder placed perpendicularly (or 
yawed) to the on-coming stream, the fluid attaches itself to the front generator 
and leaves at some other generators, while for a sphere the attachment occus at 
a point. 

If, at  the surface of a body, we write wo for the fluid vorticity and pe0 for the 
skin friction, then the differential equations for the skin friction and vortex lines 
are 

respectively. A point at which co and coo vanish is called a stagnation point and is 
a singular point of these differential equations. The classification of such points 
depends on the sign of the Jacobian, J = ~ , ) / a ( x ,  y) where (z, y, z )  is a co- 
ordinate system with the singular point as origin. If J > 0 the point is a nodal 
point and if J < 0 it is a saddle point. 

The normal velocity w (i.e. in the direction of x) near the singular point is 

dr = K 1 ~ o ,  dr = K,wo 

given by w = -LA22 2 +W3), 
where A = W . E ~  is the two-dimensional divergence of co. So that depending on 
whether A > 0 or < 0, the singular point is a stagnation point of attachment or 
separation respectively. 

The flow at nodal points of attachment has been discussed by Howarth (1951), 
who shows that by choosing the orthogonal axes in a suitable manner the curva- 
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ture terms in the equations can be neglected. The problem was reduced to the 
solution of two coupled, third-order, non-linear differential equations involving 
a parameter c which is a measure of the ratio of the two curvatures a t  the stagna- 
tion point. 

For nodal points of attachment c > 0 and it is sufficient to consider the range 
0 < c < 1. Howarth (1951) gives solutions for c = 0, $, 4, $, 1. The case when 
c < 0 corresponds to saddle points which are, if 0 > c > - 1, also points of 
attachment. Davey (1961) has examined the equations for c < 0 and obtained 
solutions for 0 > c 2 - 1, and also shown that for c < - 1, which corresponds to 
saddle points of separation, the equations cannot then be solved. We may also 
note that for - 1 < c < - 0.4394 ‘flow reversa!) occurred, although i t  was still 
possible to get numerical solutions. 

Figure 1 shows the sort of situation where these solutions may be valid. The 
point N corresponds to a nodal point of attachment where Howarth’s solution is 
probably operative. Varying c (i.e. the curvatures at  N )  gives results which seem 

N t 

FIGURE 1. Typical nodal (N) and saddle (8) points. The arrow indicates the flow direction. 

to agree with an intuitive picture that one may reasonably form. The point S 
corresponds to a saddle point of attachment and if Davey’s results are at  all 
relevant it is to this region that they apply, Here again his results seem to agree 
with intuitive ideas. 

However, the assumption which underlies Davey’s work is that the flow a t  
such saddle points of attachment is locally determinate. There are other flows 
which have been found to be locally determinate (e.g. the flow near the centre of 
a finite disk in rotating fluid, Rogers & Lance (1964)) but it is not at  all clear what 
conditions are to  be satisfied to make them so. An argument has been given for 
the present problem (Rosenhead 1963, p. 78) which says, in effect, that it is 
determinate locally since the fluid has been under the influence of the region S 
long enough t o  make it so. 

Although the present results confirm this, it was thought to be non-trivial 
enough to  make worth while a verification by tracing a boundary layer from its 
birth to a saddle point of attachment, and this was the reason for these calcula- 
tions. 
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2. The boundary-layer problem 

over a three-dimensional developable surface are 
In Cartesian co-ordinates the boundary-layer equations governing the flow 

au’ avi awl -+-+- = 0, 
ax ay az 

where (u‘, v‘, w’) are the velocity components in the directions (x, y ,  z )  respec- 
tively. The problem to be investigated herein is the solution of these equations 
subject to the boundary conditions 

u‘ = v’ = w’ = 0 on z = 0, 

uf+Uo+xUl, v’+yV, as z-fco, 

where U,, U,, V, are constants with U, > 0. 
For V, = 0 the problem reduces to the two-dimensional flow past a semi- 

infinite flat plate with pressure gradient (providing U, =t= 0). With V, non-zero the 
flow can be interpreted as fluid moving over a suitably curved plate, or, equiva- 
lently, moving over a flat plate above which a suitably shaped body has been 
placed. In  all these cases the boundary layer’s ‘birth ’ occurs at  the leading edge 
and develops downstream in the x-direction. 

The reason for choosing these particular boundary conditions was, first, to try 
to reach a downstream stagnation point with no separation and, secondly, to 
simplify the equations in (1). The simplification is achieved by noting that a 
solution of these equations can be obtained by writing uf = u(x, z) ,  v’ = yv(x, z ) ,  
w‘ = w(x, z) .  The equations for u, v, w are 

au au 1 ap a2u 

ax az pax a22 ’ 
u-+w-  = - - - + r J -  

au aw 
-+v+- = 0, 
ax ax 

and the boundary conditions are 

u = v = w = O  on z = O ,  

u+U,+xU,, v+V, as z-+oo. (3) 

Although total elimination of the independent variable y has been achieved, 
which results in a far more tractable problem, the equations remain coupled. 

In the following we are concerned with the solution of equations ( 2 ) ,  subject to 
(3), for various values of the constants U, and V,. However, before going into 
detail it will be convenient to speculate on the probable flow characteristics. 
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With V, = 0 and Ul < 0 we have Howarth’s (1938) two-dimensional flow prob- 
lem with separation7 a t  C$x/Uo = -0.120. With V, small but positive it seems 
plausible that the effect is to bleed away the retarded boundary-layer fluid and 
hence delay separation. Wilkinson (1954) has considered a perturbation approach 
using the Pohlhausen method and showed that these ideas are probably correct. 
Similar reasoning when V, is negative suggests that the boundary layer is 
thickened by feeding in fluid leading to earlier separation. This is also in accord 
with Wilkinson’s results.$ 

If V, is increased beyond a certain multiple of - U, it  is possible that separation 
will be completely eliminated (in contrast to the two-dimensional problem with 
suction) and thus the stagnation point a t  x = - [(JU, will be within the range of 
the calculation. 

The above is only part of the flow spectrum, but it is enough to indicate the 
necessity of approaching the problem in two ways: the first is a series approach, 
modified by one of Howarth’s techniques, to deal with the separating flows, and 
the second is a Pohlhausen calculation to give approximately the overall picture 
but which we may anticipate as being fairly reliable for the non-separating flows. 

Full details regarding the methods and results are given in the account pre- 
sented in Banks (1963), although the notation differs slightly. 

All computations were done on the Mercury computers at Oxford and London 
Computing Centres using the Autocode system. 

3. Solution by series 
We introduce a three-dimensional vector potential such that 

where $ = $(x, z )  and $ = q5(x, x ) .  For convenience in comparing certain of our 
results with those of Howarth (1938) we write 

where f i  and gi are functions of Z = Q x (  Uo/vx)&. 

and q5. The first momentum equation gives 
The continuity equation in (2) is automatically satisfied by this choice of $ 

t Separation here, and henceforth, will be used to denote the vanishing of ad/& and 

1 Ahiija (1964), using Wilkinson’s method, investigates the effect of suction and injec- 
avTl& at z = 0. 

tion on such a boundary layer. 
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with boundary conditions 
fn(0) = fk(0) = 0, 

f A ( c o )  = 2q)Sno+ *UISnl, 
where ?Iij = 1 if i = j ,  

= 0 otherwise, 

and dashes imply differentiation with respect to Z. The second momentum 
equation gives 

n l n  n 

C S r d f A - r + p  C ( g ; - l g n - r - g L  gr-1)- C (2r+ 1 ) g k r f r  = VSn1+ uo &, 
r=O r= l  r=O 

g n ( 0 )  = 97x0) = 0, 

g;(m) = 2KS6,o. 

with boundary conditions 

If we write f i  = U,(/71/U,)iF, and gi  = V,(Ul/U,)iG, it is found that Go = F, 

where F” F p” - 0 

and Fo(0) = Fh(0) = 0;  F,!,(co) = 2. 
o +  0 0 -  

Also with 
a 3  d2 d 

P = -+F --3nF’-+((2n+l)F~,  
n - d Z 3  , a 2 2  O dZ 

a 3  d2 d 
Q = -+F --2nF’- 

“ - a 2 3  OdZ2 O dZ’ 

the equations for Fn and G, (n k 1) are 

r = l  

n-1 n 

r=l r=l 
&,(a,) = C { 2 r F A ~ G j + ~ a ( G A - r G ~ - l - G ~ ~ G r - ~ ) } -  C (2r+ l)G;-& 

+Ba(GhG~-l-G~G,- l ) -~Snl ,  (5) 

where a = V,/Ul. The boundary conditions to be satisfied are 

Fn(0) = PA(0) = 0, J’A(co) = if n = 1,  

= 0 otherwise, 

Gn(0) = GA(0) = 0, G;(co) = 0. 

These equations contain terms involving a, although, if we use Howarth’s 
(1935) method of splitting, it is possible to write F,, Gn (n > 0) in terms of uni- 
versal functions whose governing differential equations and boundary conditions 
are independent of a. To do this we write 

and for n > 0 

Fo = Po1 
n+ 1 

r = l  

n f l  

r=1 

Fn = C ur-’Fnr, 

Gn = C ar--lG nr- 
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The expressions for u and v become 

u = *i&{F& + ( S X )  B(B;, + a q 2 )  + ( sx)2(F;,1 + aFL2 + a2FL3) 

+ (8X)3B(F;, + a q 2  + a2PA3 + a3FA4) + . . .}, 
v = *x{B’hl + ( 8 5 )  B( G;, + aG;,) + ( 8X)2 (G;, + aGLZ + a2 GL3) 

+ ( 8LQ3B( G;, + aG6, -t a2 Gh3 + a3 GA4) + . . .}, 
where X = I x/.ET, and B = U,/l U,J . Full details of this part of the investigation 
are given in Banks (1963) and will not be reproduced here. 

With a = 0 (i.e. V, = 0) the calculation reduces to that of Howarth (1938), 
although for a + 0 the number and complexity of the differential equations is 
much greater. A measure of the complexity of the three-dimensional problem 
over that of the two-dimensional one is illustrated by noting that, as given by 
Howarth, the number of terms on the right-hand side of the differential equation 
defining fs is 11, whereas in the present problem there are 10 terms on the right- 
hand side of the equation defining Fa3. In  fact the problem, even to terms of 
O(X4), was too big for Mercury using the Autocode system and the solution of 
Gd3 and G44 could not be obtained in this way. This difficulty was overcome by 
solving (5) (with n = 4) for two non-zero values of a and calculating Gi3(0), 
G&(O) using (7 ) . t  

We note here that for a infinitely large the boundary-layer solution becomes 

1 (8) 
u = $U,{F;,+ (8X)B,PI,+(8X)2B’~3+(8X)3BlB’~l+ ...}, 
w = +q{B’& + ( 8 Z )  B, GI2 + (SX)’ GL3 + ( SX)’B1 Gi4 + . . .}, 

where x = xlV,l/U, and B, = q/lqJ. This corresponds to the external flow 
U = U,, V = yV, of course, and any comparison with results for la1 large but 
finite must be made using the independent variable x = 1al.X. 

Now in the case of the two-dimensional linearly retarded flow Howarth (1938) 
estimated that at least 15 terms of the series expansion were required in order to 
calculate the skin friction near separation. The reason for this appears to be due 
to a singularity in the boundary-layer equations a t  separation. Although the 
present problem is essentially a three-dimensional one, it seems reasonable to 
expect that some sort of singularity will arise. Terrill (1960) has shown that for 
the two-dimensional boundary layer with suction the singularity is still present 
at separation. 

For the case of a separating boundary layer, the skin friction, and hence the 
position of separation, can be found reasonably accurately by using one of the 
methods suggested by Howarth (1938), whereby the contribution from the terms 
up to O(Xm) is regarded as an approximate solution and then u, v are written 

ZG = *uo{8’h+ (8X’)BP;+ (SX)’FL+ ... +(8BX)m-1F~_,+A(S)B’~}, 
v = &V,{FA + (8X) BG; + ( 8 X ) 2  

) (9) + . . . + ( 8BS)‘-1 GLPl + C ( S )  GL}. 

t Since this work was completed a more general series calculation has been made by 
Sowerby (1965), who investigates the three-dimensional effects near the leading edge of a 
flat plate. He considers terms to O ( X 2 )  oiily and uses different variables. However, com- 
parison of the appropriate terms provides a check to O(X2). 
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The correction terms are governed by the functions A ( X )  and C(X) and these 
are determined by using the two compatibility relations obtained by differenti- 
ating the boundary-layer equations twice with respect to z and then evaluating 
at z = 0. The two conditions to be satisfied are 

The prime interest here is not so much in the functions A ( X )  and C(X) as such, 
but in the contribution they give t o  the skin friction. We therefore substitute the 
differentiated expressions of (9) in (10) and then, as Curle (1960) did in a two- 
dimensional investigation, eliminate the functions A (X) and C(X) by using (9) 
again, so that we have two equations which determine the two components of the 
skin friction. 

Of course, the assumptions implicit in writing equations (9) in this form are 
that the extra terms A ( X )  F h  and C ( X )  GL are small and that the functions Fp 
and G, for I, >/ m+ 1 are respectively similar in shape to the functions Fm and 
G,. The smallness of the added terms can be justified at  a later stage although 
the similarity of the functions Fp and Gp is only shown to be reasonable by 
examining FmP2, Fm-l, F, and GmP2, Gm-l, G,. 

the equations for L and M are 

Fm(0) 
dL L2 

d Y  2 
S L  - - .- - BccXLM = H0 + . . . + ( 8BS)m-1H,-1 + L w] 

and ! 

where 

Hi = F f ( 0 )  - Fi(0)  [FL(O)/FL(O)], Ei = GT(0) - Gi(O) [GL(O)/G;(O)] 
and superscripts denote differentiation with respect to 2. The initial values for 
L and $1 so as to start the integration of equations (1 1)  can be obtained from the 
following relations : L = F;I(O)+(8X)BF’;(O)+ ..., 

M = F;I(O)+(8X)BG;(O)+ .... 
The functions F;(O), G:(O), etc., and hence L and M ,  are all functions of a and 

the equations in (1  1) have been integrated for a number of values of a which are 
consistent with the assumptions made. 

The functions Ff(O),  GT(0) are obtained by differentiation of the appropriate 
differential equations and it is found that 

F,V(O) = - [F:(O)]2, 
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while, for n 2 1, 
n a n  

F;(o) = ( 2 r -  l)F;(O)F;+.(o)- - G;-l(o)F:-r(o), 
r = l  4 ?=I 
%-1 a n  

r=O 4,=1 
GX(0) = (4n-6r- l)F;(0)G$-r(O)+- G:-l(0)G:-l.(O)-(2n+ l)F:(O)Fi(O). 

Results of series method 

Using the universal function approach it was found that, with the exception of 
Gd3 and G44, all the functions up to O(X4) could be integrated numerically. 
G,",(O) and G,",(O) were obtained using (5), and table 1 gives F&.(O) and G;,(o). 
Tabulation of the universal functions is given in Banks (1963), and good agree- 
ment was found on comparison of the appropriate results with those obtained 
by Howarth (1938). 

FZ(0) 

\, j 1 2 3 4 5 
i\ 
0 1.328229 
1 1.020541 0.083014 - - 
2 - 0.069253 - 0.025473 0.012189 - 
3 0.055960 0.019079 - 0.005206 - 0.001017 - 
4 -0.03718 - 0.01586 0.00285 0~00101 - 0.00004 

- - - - 
- 
- 

Grj(0) 

1 2 3 4 6 

- 0.311526 0-626000 - - 1 
2 - 0.083250 - 0.094731 - 0.021748 - 
3 0.04766 0.04129 0.00676 - 0'00194 - 
4 -0.03290 - 0'02673 - 0.00354 0.00185 0.00038 

x 
- 

TABLE 1 

Similarity of the functions has been examined (Banks 1963) by plotting 
F ~ ( Z ) / F i ( m )  and G&Z)/Gi(co) (i = 3,3 ,4)  for various values of a. It appears that 
for la1 not very large ( -  2 < a < 2 )  similarity exists, but as la/ increases from 
zero it gets progressively worse. This failure to deal with the whole range of a is 
not unexpected, Nevertheless, we may anticipate that, although Howarth's 
method is not applicable for a great range of a values, it is highly likely that the 
Pohlhausen results will, to a certain extent, be able to cope over this range. 

The equations in (11)  for the x- and y-components of the skin friction (i.e. 
L ( X ,  a) and M ( X ,  a) respectively) were integrated for a number of values of a. 
The results are given graphically in figures 2 and 3 for B = - 1. The integration 
of these equations was also attempted for larger values of la1 ( *  1.e. a < - 2.5 and 
a > 3.5) with B = - 1 but the resulting values of A ( X ,  a) and C ( 9 , a )  were 
fairly large for moderate values of X ,  and this was taken to imply breakdown of 
the underlying assumptions necessary for the use of this procedure. The bounds 
on a found in this way are certainly consistent with those suggested by the 
similarity requirements, but naturally no absolute bounds can be found in this 
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s 
FIGUFLE 2. The variation of the x-component of skin friction from the modified-series 

results. The values of CL are indicated on the figure. 

1.2 

1 -0 

0.8 

0.6 
e - 

0 

- 0.2 

- 0.4 

- 0.6 t 
FIGURE 3. The variation of the y-component of skin friction from the modSed-series 

results for the values of CL shown. 

manner. Results for B = + 1 are given in Banks (1963) and we merely note here 
that even with ti, = 0 and V, < 0 no separation appears possible. 

With a = 0 (CG < 0) we find separation is predicted at  X = 0.1 194, which should 
be compared with the values of 0.120 and 0.1198 as given by Howarth (1938) and 
Leigh (1955) respectively. Hence reasonable a'greement is obtained in this special 
case, and there appears to be no immediate reason why the values of separation 
presented here for a + 0 should not have a similar accuracy. 
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These findings appear to confirm some of the plausible arguments given earlier, 
in the sense that for I a1 < 1 separation of the linearly retarded flow is delayed or 
advanced according as V, > 0 or V, < 0. In  fact the results seem to suggest (and 
it is confirmed by the approximate solution given in $4) that for la1 large enough 
separation is eliminated altogether. This latter phenomenon is not totally un- 
expected for the case T< > 0 (i.e. a < 0) but the fact that there is a strict minimum 
for X J a )  at about a = 2 and that, furthermore, for a 2 3.5 boundary-layer 
separation is again inhibited, appears to be a novel one. 

Further discussion of these results, together with a comparison with the 
Pohlhausen analysis of 3 4, is given in 3 5. 

s 
0.0625 
0.0750 
0.0875 
0.1000 
0.1125 
0.1150 
0.1194 
0.140 

7 r---A 

Howarth results 

0.395 0.394 
0.336 0.335 
0.271 0.270 
0.199 0.198 
0.109 0.106 

- 0.000 

Present 

- - 

0.000 - 

TABLE 2 

11 (S) 
7 ----L 

Present 
Howarth results 

0.094 0.09 
0.21 0.24 
0.47 0.53 
0.93 1.15 
2.12 2.67 
2.68 3.35 

Before proceeding to the approximate method it is of interest to make a more 
detailed comparison with Howarth's ( 1938) results. There are slight differences 
in procedure between his approach and that used here and, furthermore, he had 
obtained more terms in the series expansion, so that complete agreement is un- 
likely. However, they should be reasonable enough to provide a partial check on 
the above analysis and integration. 

In Howarth's treatment he finds that (in his notation) f ; ,  f6/, fi, and f i  can be 
fairly accurately expressed in the form K, y e--0.lV3 where K, is a constant depend- 
ing on f,, and y is equivalent to Z which has been defined above. He then writes 

u = Ib , ( f ; - ( s~*) f ;+ ... +(S~*)~ f~+Q(x*) re -O ,~r1~} ,  

where b, and x* are respectively Q, and X in the present notation. Alsof,, fi, f 2 ,  
etc., are the same functions as Pol, Tll, T21, etc., of the present work. 

Hence 

and comparison with the above indicates that 

A ( S ) F l l ( 0 )  = (8~*)~f;(O)- (S~*)~fi(0)+ ( S X * ) ' ~ ; ( O ) + Q ( X * )  
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so that a direct comparison with Howarth’s results is possible. Table 2 gives both 
sets of results for the skin friction and the function A ( S )  for various X. 

As will be noted, agreement is very reasonable apart from the values of A ( X ) .  
Fortunately the latter does not appear to be critical with regard to the skin 
friction and separation. 

4. Pohlhausen solution 
The main reason for the calculation in this section was the desire to obtain a 

fairly quick and general guide as to the overalI behaviour of the flow pattern; a 
measure of the success of the Pohlhausen method is given in $5. Furthermore, 
since the exact series solution was also being currently considered, it was thought 
desirable to compare the one boundary-layer thickness method of Taylor (1950) 
with the two boundary-layer thickness approach of Cooke (1952). However, it 
was found that both methods gave virtually identical results and so only the one 
boundary-layer thickness method and the results are presented here. The reader 
is again referred to Banks (1963) for further details. 

Using equations (2) and the boundary conditions (3) the momentum integral 
equations are found to be 

where 81 = j; (1-;)az, S, = j; ( I - $ & ,  

8, = 1;; (1 - ;) dz, 0, =so” ; (1 -;) dz, 

and U = UO+xU,. These are exact, and the approximate forms for the Pohl- 
hausen solution are obtained by replacing infinity in the integrals by a boundary- 
layer thickness S. 

The next step is to assume polynomial forms for the velocity distributions. If 
a quartic profile is used for the two-dimensional linearly retarded flow satisfying 

au a2u u = u ,  - - -- = O  at  z = S ;  
az ax, 

it  is known that separation is predicted at 0.156 although the exact value is 
0.120. It appears that the reason for this poor agreement is due to the stringent 
condition tPu/az2 = 0 at the edge of the boundary layer. Indeed, it has been found 
by Jain & Bhatnagar (1962) that if instead we satisfy a3u/az3 = 0 at z = 0, 
separation is predicted at 0- 112, which gives much better agreement. 
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Further, a calculation using the cubic profile which left a2ulaz2 = 0 at z = S 
unsatisfied indicated separation at  about 0.13, which compares tolerably well with 
the exact value. This was considered accurate enough for the present investiga- 
tion, and the following approximations were made : 

where y = 218, 

0.6 

0.5 

0.4 

0.2 

0.1 

- \ \  \ 

0 0-02 004 0.06 0.08 0.10 0.12 0.14 0.16 
9 

FIGURE 4. The %-component of skin friction for various values of a from 
the Pohlhausen results. 

Substitution into the approximate form of (12) results in equations of the type 

where A = @(I C<l/vX)&, for the determination of A and F. Similar equations are 
obtained when U, = 0, which corresponds to letting a-tco. 

For separation we are interested in the vanishing of (au/ax),, i.e. in the possi- 
bility of 3 + 2BXA2 vanishing. For the two-dimensional case of a linearly retarded 
external flow A remains finite and since B = - 1 the boundary layer separates 
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when X = 3/3A2. However, even with V, < 0 no separation appears possible with 
a linearly accelerated flow since B = + 1. Indeed even when U, = 0 no boundary- 
layer separation occurs, as will be seen from the results presented in the following. 

2.5 

2.0 

0.5 

/ / /  / - zu/- 

- - 5  

1 1 1 1 1 

0 

2.5 

2-0 

1 2 3 4 5 6 7 
9 

FIGURE 5 .  Pohlhausen result's for V, > 0. 

0 1 2 3 4 5 6 
z 

FIGURE 6. Pohlhausen results for V, < 0. 
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Pohlhausen results 

As indicated previously both the one and two boundary-layer thickness methods 
gave virtually the same results and hence only one set is presented here. 

Figure 4 gives a plot of [2(vX)*/U0 I U,l*] (au/az),  against X for values of a in the 
range - 2  < a < + 2 .  For a = 0 separation is predicted at  about X, = 0.132, 
whereas for a = + 1, - 1 we obtain X ,  = 0.121, 0.154 respectively. The actual 

3 

3 

2 

1 
e - 

* *  0 
h- ‘9 E -1% 

- 1  

- 2  

- 3  

- 4  

v,>o 

I I I I 

2 3 4 5 x  

.\ ‘\\ \ \ 

FIGURE 7. The variation of the transverse skin friction from the Pohlhausen results for 
V, 0. The values of a are indicated on the figure. 

movement of the position of separation for 1x1 small is found to be in reasonable 
agreement with Wilkinson’s (1954) results, i.e. for a = - 0.1 separation is de- 
layed by about 0.002. However, for a 2 4.5 and a < - 2.3 the skin friction in the 
x-direction does not vanish, and hence it suggests that boundary-layer separation 
is completely inhibited, 

Figures 5 and 6 contain plots of [Z(vx)4/&I~l*] (au/az), against x for the 
limiting cases la1 = co, V, > 0 and la\ = co, V, < 0 respectively. Also shown on 
these graphs are the results for a = - 2.3, f 5, f 10, k 20 and a = 4, k 5 ,  f 10, 
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20 respectively. Figure 7 gives plots of [Z(vs)*/yV, IV,li] (av‘/ax), for a number 

It would appear that the plausible behaviour argued in 0 2 is confirmed. 
of values of a. 

5. Comparison and discussion 
Pohlhausen and series solution 

We are here concerned with the qualitative rather than the quantitative agree- 
ment, for, as mentioned above, the two-dimensional linearly retarded boundary- 
layer flow (i.e. a = 0 )  is predicted to separate a t  X ,  = 0.13 by the Pohlhausen 
method, whereas the exact series solution gives X, = 0.12. 

A useful guide concerning the qualitative agreement is obtained by comparing 
certain critical values of a. For example, that value of a, say a,, corresponding to 
the earliest possible separation (i.e. gives X,(a) its minimum value). The Pohl- 
hausen method gives ae = 2.5, whereas the series method (in conjunction with 
Howarth’s modification) indicates a value near 1.7. There are two possible 
reasons for the poor agreement: the first is that the Pohlhausen method is just 
not good enough, particularly the nearer the leading edge that separation occurs. 
Secondly, it is possible that the series solution may not be very accurate for 
values of a near 2 ,  since in this region (of a)  the method used to find the skin 
friction and separation is breaking down owing to the non-existence of similarity 
in the functions concerned. However, it is more than likely that the series solu- 
tion is more representative of the flow field than is the Pohlhausen solution. 

Another possibility for comparison is that value of a, a, (where a, < 0), beyond 
which the boundary-layer separation is completely inhibited. The Pohlhausen 
results indicate af = - 2.3 and, although the series method is unable to give a 
definite bound, we may note that Davey’s (1961) results provide a check, and the 
agreement is very good. Further discussion is made in what follows. 

Graphs are given in figures 8 and 9 showing values of [Z(vX)*/U,l U..la] (au/az), 
and [2(vX)*/yV,;] U,lg] (av’/az), for various values of a. Further details are given in 
Banks (1963). 

Although the agreement is fairly poor near separation, and particularly so in 
the case of [2(vX)4/V,IU1l*] (av/az),, it is possible that for the non-separating flows 
the ‘asymptotic’ behaviour may be fairly accurate (see below). 

Discussion with further compurison 

It would appear that the only flows of real interest concern the boundary layer 
characterized by the linearly retarded flow in the x-direction (i.e. U, < O), and so 
all that follows is solely concerned with the latter and also with the limiting flows 
governed by U = U,, V = yV,. 

The boundary layers discussed here result from an external flow past a sharp 
leading edge and, with the exception of the limiting flows mentioned above, all 
the external flows considered have a stagnation point a t  S = 1 (i.e. x = lC<I/U,). 

Now in the two-dimensional problem, and also in cases where JaI is not greater 
than about 3, it appears the boundary layer separates long before the stagnation 
point is reached. If we denote by X, the value of X at which (aujaz), vanishes, 
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then ( X s ,  0,O) is a singular point of the differential equations which govern the 
surface streamlines, and the classification of such a point depends on the sign 
of J = ~(~z,~J/qw). 

0.1 

0 0.01 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
X 

FIGURE 8. Comparison of z-component of skin friction. - , series results; 
___--- , Pohlhausen results. 

--- 
I 

FIGURE 9. Comparison of transverse skin friction. -, series results; 
__-_ , Pohlhausen result's. 
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However, the curves in figure 3 appear to indicate that, for all relevant values 
of a, not only does (aupz), vanish a t  X,, but so also does (av/az),. Indeed, examina- 
tion of the differential equation for M in (1 1) shows that the vanishing of ( a w / a x ) ,  
is a direct consequence of the vanishing of (aulaz), and that in the neighbourhood 
of S = X, the solution of (1 1) for a = - 1 is of the form 

L = 1.85~4 + 5.90~: - $M1& + 52-5& + . . . 
and 

M = n/r,b- 1 0 9 ~ ~ + 2 9 ~ 6 H ~ ~ ~ + ( 0 - 2 0 6 ~ ~ - 2 0 3 7 ) x + 3 6 0 ~ ~ x ~ +  ..., 

where x = X, - X and XI is a disposable constant. 
Near x = 0 the f i s t  two terms in the expansion of L are found to be sufficient 

to repeat the computer results reasonably well, although the convergence of Jl 
is such that each of the 5 terms indicated above give contributions of equal order 
of magnitude even at  x = 0.0017. If values of M are plotted for different a, it 
seems to suggest the singularity is $rather than fr (i.e. N1 + 0) .  

It would appear therefore that in the vicinity of X = X, either a lot more terms 
are required to obtain convergent results in the above series for M ,  or the step- 
lengths used in the integration should be reduced. However, since the singularity 
is a product of the method of solution and in particular of the assumption of 
similarity for the ‘error ’ terms, its actual existence in the boundary-layer equa- 
tions should be first confirmed by some other method (e.g. using finite differences). 
Of course one could also apply this argument to the x-component of skin friction, 
although the absence of such a singularity would be very surprising. 

The fact that the singularity has been ‘built-in’ is also the case in Curle’s 
(1960) two-dimensional investigation into the flows U ( x )  = U,(X - X3) and 
U ( X )  = Uo(X -X3+/3;k5), where p + 0.079 and - 0.122. 

A three-dimensional problem involving separation concerns the yawed 
cylinder and, although surprisingly no detailed examination has been attempted, 
a series investigation was made by Sears (1948) for U = U,(X - X3), T‘ = constant. 
Four terms in the expansion for the span-wise velocity component were obtained 
and, since these suggest some form of similarity, it is conceivable that one could 
have proceeded with a Howarth-type investigation near separation. The above 
appears to indicate that such an investigation would lead to (avlax), vanishing 
a t  X = X,.t 

However, for the present flows, it should be noted that since (a2w/az2), < 0 it 
would appear that at  X,, where it is assumed (av/az), = 0,  the velocity profile of 
v (for certain values of a )  is of the form shown in figure 10. Although there is no 
obvious reason why this is not a possibility it does mean that at  some X < X,9 
the stress and velocity both vanish in the interior of the fluid. 

For the classification of the separating flows in this investigation, we assume 
that in the vicinity of separation 

A recent investigation by Mr P. G. Williams of N.P.L. into the flow U = U,(l -X), 

60 Fluid Mech. 28 

V = constant confirms that (avlaz), is singular at  X = X, but that it remains positive. 
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where L,, M ,  are both positive constants. Hence we find J -+ - 00 as x -+ 0 so that 
the singular point (X8, 0,O) is a saddle point. Further it can readily be shown that 
the normal velocity near x = 0 is positive so that the singular points are saddle 
points of separation. 

The above discussion concerning the classification of singular points is based 
as usual on the topography of the surface streamline pattern, although it is found 
convenient also to classify in terms of the external flow velocities, since they will 
determine at least the leading terms in the behaviour of the normal velocity. 

FIGURE 10 

In  the case of the separating boundary-layer flows the actual existence of the 
stagnation point in the external flow is of academic interest, since the singular 
point at  separation must be the end-point of any boundary-layer calculation. 
However, when la1 is large and finite no separation appears possible and the stag- 
nation point is then within the ‘flow field’. Hence this stagnation point can also 
be regarded as a singular point of the appropriate differential equations and, with 
the z-component of the external velocity specified, its classification depends not 
only on the sign of V, but also on the relative magnitude of IV,l and 141 of course. 

For V, < 0 the point is a nodal point of separation, while for V, > 0 the point is 
a saddle point of attachment or separation according as V, > - or V, < - U,. 
These cases are discussed in the following. 

Saddle poirzt of attach,ment (V, > - U,) 
As indicated earlier, saddle points of attachment have been discussed by Davey 
(1961) and it is of interest to compare his results with the limiting behaviour as 
S -+ 1 of some of the flows discussed herein. 

= 6q, where 
a > 0 > 5 and 6 3 -a; the latter condition is necessary to ensure that the saddle- 
point flow is one of attachment. The barred variables have been introduced to 
avoid confusion in what follows since x and y in this work are to be respectively 
identified with B and 3 after a suitable change of origin. 

Davey postulated the external flow to be of the form = Zr and 
- 
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Before proceeding to a detailed comparison it is of interest to note that Davey 
found that flow reversal in the y-direction occurred for C =  6/Z < -0.4294, 
whereas the Pohlhausen results of 94 indicate that in the analogous regime 
separation occurs in the x-direction for a! > ug = - 2.3. Hence considering the 
agreement between the comparable critical values of a and l / C  ( - 2.3 and - 2.33 
respectively) we may anticipate similar agreement at other negative values of tl 
for which the boundary layers do not separate. 

- a: C 

-a3 0 

-10 -0.1 

-5  -0.2 

-4  -0.25 

-2.5 -0.4 

s s 
2.0 
3.0 
4.0 

.- 

0.2 2.0 
0.3 3.0 
0.4 4.0 

0.4 2.0 
0.6 3.0 

0.4 1.6 

0.4 1.0 

Skin-friction Two-dimensional 
coefficients displacement thickness 

0.553 1.195 1.018 0.645 
0.553 1.267 1.018 0.641 
0.553 1.267 1.018 0.641 

(0.570) (1.233) (1.026) (0,648) 

0.447 1.186 1.134 0.651 
0.447 1.186 1.134 0.651 
0.447 1.186 1.134 0.651 

(0.459) (1.228) (1.141) (0.654) 

0.330 1.178 1.284 0.658 
0.330 1.178 1.283 0.659 

(0.335) (1.226) (1.287) (0.658) 

0.267 1.175 1.375 0.661 
(0.268) (1.225) (1.375) (0.659) 

0.060 1.170 1.727 0.663 
(0.046) (1.226) (1.702) (0.663) 

TABLE 3 

It will be appreciated that in order to compare with Davey’s results it is im- 
portant that the values of X at which this is to be made are not small, and, since 
we can hardly expect the series results for these non-separating flows to be 
convergent away from the vicinity of the leading edge, we shall concern ourselves 
with a comparison of the Pohlhausen results. Also since the latter are only 
approximate this comparison is made a t  X = 3. This only refers to a! finite, 
although even for the limiting case when a! = - co we assume that ‘asymptotic ’ 
behaviour prevails at  x = O(1). 

Davey gives the skin friction and the two-dimensional displacement thickness 
associated with both components of the velocity for the values a! = l / C  = - 2.5, 
- 4, - 5, - 10, and the limiting case as a -+ - 00 is given in Howarth’s original 
paper on the subject. The two-dimensional displacement thickness for the x- 
component of velocity is defined as 

and a similar expression for the y-component. 
50-2 
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Although the case for a = -m (i.e. E = 0 )  requires separate treatment, the 
details are straightforward; the results are given in table 3, in which Howarth’s 
and Davey’s ‘asymptotic’ values are in brackets. 

The agreement here is so good that Davey’s method of treating the problem of 
saddle-point flows as locally determinate is completely justified. This, of course, 
only refers to the non-separating flows. 

0.8 

0.2 

0 1 2 3 0 1 2 3 
?I r 
(a )  ( b )  

FIGURE 1 1 .  Comparison of velocity profiles for values of a shown. --, exact results; 
- -__  , Pohlhausen results. (a )  Shows Howart,li’s profiles and ( b )  shows Davey’s profiles. 

0.8 

0.6 
b. . 
i 

0.4 

0.2 

I_ z 

FIGURE 12. Transverse velocity profiles for la1 = co for 9 = 0.3 and 0.4. 
__ , series; ----, Pohlhausen. 
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Howarth (1951) and Davey (1961) also give the velocity profiles for a = - CQ 

and a = - 4 respectively and a comparison is given in figure 11, where the in- 
dependent variable 7 = (zL/v)*z = 2( lalX)*z is used. Agreement is again found to 
be very reasonable. 

1 -0 

0.8 

0.6 

0.4 

0.2 

0.1 

0 

- 0.1 

- 0.2 

b . 

- 0.4 

- 0 6  

FIGURE 13. Transverse velocity profiles a t  x = 0.4, 1.0 and 2.0 from Pohlhausen resu1t.s. 

Nodal points of separation (V, < 0) 

This section is concerned with the boundary layers governed by the external 
velocities U = U, +XU, and V = yV, with U,, V, both < 0, and is further restricted 
to flows for which a is greater than about 3, since for other values of a ( 3 0) it 
appears the boundary layer separates. 

An important feature of the non-separating and some of the separating flows 
concerns the path of a fluid particle near z = 0, or, equivalently, the surface 
streamlines. It seems that, although near the leading edge (i.e. X small) the 
boundary-layer flow is uni-directional, it is found that away from this edge the 
flow becomes bi-directional for a: greater than a certain value, ae say (a, + 1). 
Furthermore, in the case of flows that separate this flow reversal in the boundary 
layer occurs only in the immediate vicinity of separation. 

The y-component of the boundary-layer velocity profile corresponding t o  the 
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external flow velocities U = U,, V = -ylV,l is given in figure 12 together with 
the comparable Pohlhausen results. These are plotted at  5 0.3 and 0.4 as 
indicated; other Pohlhausen profiles are given for = 1.0, and 2.0 in figure 13. 
It will be apparent that, near the ‘wall’ 2 = 0, the y-component of velocity 
changes sign for large enough, so that the flow in the (y, 2)-plane is of the form 
shown in figure 14. This is also the type of flow occurring when U = Uo-x/l<l 
and V = -ylV,l , providing a > a,, and appears to suggest that even for stagna- 
tion point flow of separation the local flow near y = x = 0 is similar to the case 
when V = 91 V, I corresponding to stagnation point flow of attachment. 

FIGURE 14 

In actual fact this is precisely the same sort of flow as was found by Proudman 
& Johnson (1962) in their investigation dealing with the two-dimensional 
boundary-layer growth at  a stagnation point of separation. As they point out 
there is no steady solution of this boundary-layer problem, and they have made 
theirs determinate by considering it as an impulsive boundary-layer growth 
investigation, being locally determinate in the sense outlined above. 

In  the present work the problem has been made soluble by a transverse field 
in the x-direction. Indeed, there appears to be an analogy between the two prob- 
lems if we identify the time variable of Proudman & Johnson (1962) with the 
space variable x used herein. 

Even in the case of non-separating boundary-layer flows with la1 finite the 
results of this section will not be valid right up to the stagnation point of course. 
This is not surprising since there is no steady solution for flow at such a three- 
dimensional stagnation point of separation. 

These results form part of a thesis submitted to the University of Bristol. 
The author would like to acknowledge gratefully the help and encouragement 

A D.S.I.R. maintenance allowance was received during the period when this 
of Professor L. Howarth and Dr M. H. Rogers. 

work was done. 
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6. Addendum 
Some time after this paper had been submitted a detailed comparison of the 

results here with those of Sowerby (1965) was made and it was noticed that the 
boundary-layer calculation for the case a = 1 could be reduced to a two- 
dimensional one. 

It appears that for V, = U, (i.e. a = 1)  a solution of the y-component momentum 
equation in ( 2 )  is given by CJ, u 

g = ___-. u, + x q  ’ 
so that the equations which determine u. and tu are 

au iiu d r q r )  a 2 t L  
u-+u-  = U(x)-  + v -  ax a2 ax a22 ’ 

subject to the boundary conditions 

u + U ( x )  = CL+xUl as z + 00. 

Reduction to two-dimensionality is then achieved, of course, by an application 
of Mangler’s transformation. 

As far as the universal functions are concerned, the existence of this special 
solution does mean that more computing was done than was actually necessary, 
although on the other hand it does provide certain checks on the results presented 
here. It also means that i t  is possible to use the results of two-dimensional 
boundary-layer theory as a comparison; for example, if U, < 0 an application of 
the method proposed by Thwaites (1949) predicts separation at X, = 0.1126, 
whereas the present work gives X ,  = 0.1  113. 

For this special solution it follows that the streamlines form a system of planes 
which are normal to the plane z = 0 and which intersect the latter in the lines 
(C&+xLT,)/y = constant. These ‘streamsheets’ radiate from or to X = F 1 
depending on whether U, > 0 or < 0. Also for U, < 0 (av/az), vanishes like 

Although the radiating streamline pattern suggests cylindrical polar co- 
ordinates, the boundary conditions, and the solution, are most easily described 
in Cartesians. 

If we interpret this boundary layer as formed by a uniform stream over a 
suitably shaped body, a theorem due t o  L. C. Squire (Rosenhead 1963, p. 457) 
then implies that the curves (U, + xUl)/y = constant are geodesics of that surface. 
The axisymmetric forms of the reduced equations are not unexpected, for it 
is a well-ltnown result that, in writing the equations in terms of co-ordinates 
which are based on the projection of the external streamlines, the resulting 
equations reduce to this form if there is no secondary flow. 

(&L/iiz),. 
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Finally, the pertinent question presents itself: are there other mainstreams 
( U ,  V )  for which v’/ V = u’/ U 1 An answer to this question for the boundary layer 
on a developable surface is readily obtained using equations (1) and it appears 
that the condition to be satisfied is that 

(;): (F) +; (F) = 0. 

The general solution of this equation is 

V X  = Y U  + VG( U /  V ) ,  

where G is some arbitrary function. The particular function G = - “JC$ yields 

u UO+XUl 
v g q  * 

- _____ - 

Apart from the other (trivial) case G = 0, which gives rise to the axisymmetric 
stagnation point flow, no other interesting examples have been found. 
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